Question Number	Acceptable Answers	Reject	Mark
1(a)	(50 x 4.18 x 15.5 =) 3239.5 (J) IGNORE any sign given ALLOW 3.2395 kJ (units are essential for this answer)		1

Question Number	Acceptable Answers	Reject	Mark
1(b)	$(1.46 \div 56.1 =) 0.026025 (mol)$ (1)		2
	$(\Delta H = 3.2395 \div 0.026025 = -124.47)$ -124 kJ mol ⁻¹ (1)	+ sig	
	OR		
	$(1.46 \div 56.1 =) 0.0260 \text{ (mol)}$ (1)		
	$(\Delta H = 3.2395 \div 0.0260 = -124.596154)$ -125 kJ mol ⁻¹ (1)		
	ALLOW the use of CaO = 56 = $(-124.255 \text{ kJ mol}^{-1}) - 124 \text{ kJ mol}^{-1}$		
	ALLOW TE from answer to (a)		

Question Number	Acceptable Answers	Reject	Mark
	Acceptable Answers Any three reasons from: Heat/energy loss (to the surroundings / to the apparatus)/ Lack of lid/no lid/ heat capacity of the cup not taken into account/heat capacity of the cup is not zero (1) Inaccuracy of thermometer/temperature readings (1) Impure CaO/Absorbed moisture from the air (1)	Reject Incomplete reaction Just 'heat lost to the thermometer'	3
	Heat capacity is not 4.18/ the mass of solution is not 50 g/ density of solution is not 1 g cm ⁻³ (1) IGNORE non-standard conditions/ stirring/human error/incomplete transfer of solid		

Acceptable Answers	Reject	Mark
Marking point 1 (Q=(250 x 4.18 x 25) = 26125(J) OR		3
(26125 ÷ 1000 =) 26.125 (kJ) (1)		
Marking point 2 (n = $26.125 \div 196.8 =$) 0.132749 (mol) (1)		
Marking point 3 Mass = $(0.132749 \times 56.1 =)$ 7.4472189 = 7.45 (g) (1) ALLOW $(0.132749 \times 56 =)$ 7.433944 = 7.43 (g) Correct answer alone scores 3 marks	7.5	
	Marking point 1 $(Q=(250 \times 4.18 \times 25) = 26125(J)$ OR $(26125 \div 1000 =) 26.125 (kJ)$ (1) Marking point 2 $(n = 26.125 \div 196.8 =) 0.132749 (mol)$ (1) Marking point 3 Mass = $(0.132749 \times 56.1 =)$ 7.4472189 = 7.45 (g) (1) ALLOW $(0.132749 \times 56 =) 7.433944$ = 7.43 (g)	Marking point 1 (Q=(250 x 4.18 x 25) = 26125(J) OR (1) (26125 \div 1000 =) 26.125 (kJ) (1) Marking point 2 (1) (n = 26.125 \div 196.8 =) 0.132749 (mol) (1) Marking point 3 (1) Mass = (0.132749 x 56.1 =) (1) 7.4472189 = 7.45 (g) (1) ALLOW (0.132749 x 56 =) 7.433944 = 7.43 (g) (1)

Question Number	Acceptable Answers	Reject	Mark
1(d)(i))	arking point 1Arrow downwards from CaCO3 to the box, with 2HCI((aq)) alongsideMarking point 2 Correct entities and states in box		4
	$CaCl_{2}(aq) + H_{2}O(l) + CO_{2}(g) $ (1) Marking point 3 Correct use of Hess' Law ($\Delta H = \Delta H_{CaCO3} - \Delta H_{CaO}$) e.g18.8196.8 = (1)		
	Marking point 4 $\Delta H = +178 (kJ mol^{-1})$ (1)		

Question Number	Acceptable Answers	Reject	Mark
1(d)(ii)	Products on line below $CaCO_3(s)$ with both arrows going down from $CaCO_3$ and CaO		1
	Example		
	<u>CaO(s) + CO2(g) (+ 2HCl(aq))</u> (2HCl(aq) +) CaCO3(s) <u>CaCl2(aq) (+ CO2(g) + H2O(l))</u> ALLOW the word 'products' for formulae		

Question Number	Acceptable Answers	Reject	Mark
2 (a)	(Contains) only (C—C) single bonds/ only σ bond(s)		2
	OR (Contains) no (C=C) double bond(s)/no triple bond(s)		
	OR Cannot undergo addition (reactions)		
	ALLOW Has maximum number of hydrogen atoms / has maximum amount of hydrogen /can form no more bonds / no pi-bonds.		
	IGNORE references to alkanes (1)		
	(Compound of) carbon and hydrogen ONLY/ENTIRELY/PURELY (1)	" Mixture of carbon and hydrogen only"	

Question Number	Acceptable Answers	Reject	Mark
2(b)(i)	Measure mass (of cylinder) before and after (burning)		1

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	Energy transferred = (100 x 4.18 x 27.1 =) 11327.8 (J) / 11.328 kJ		1
	Ignore SF except 1 SF		

Question Number	Acceptable Answers		Reject	Mark
2(b)(iii)	Mol propane = 0.33/ 44 = 0.0075	(1)		3
	$\Delta H_{\rm c} = (-11.3278/0.0075) = (-1510.4)$			
	= -1510 (kJ mol ⁻¹)			
		(1)		
	Sign and 3SF	(1)		
	Allow TE from b(ii)			

Question Number	Acceptable Answers	Reject	Mark
2 (b)(iv)	Incomplete combustion	Evaporation of water	1
	carbon monoxide forms soot forms	Transfer losses Not under standard conditions Not all the fuel burns	
	Ignore references to specific heat capacity of the apparatus or evaporation of propane		

Question Number	Acceptable Answers	Reject	Mark
2(c)(i)	$C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(g)$ + 6490 kJ mol ⁻¹		1
	3C (g) + 8H(g) + 10 O (g)		
	Balancing and state symbol required		

Question Number	Acceptable Answers	Reject	Mark
2(c)(ii)	Z = (6x C = 0 + 8x0 - H = 4830 + 3712)		1
	= (+)8542 (kJ mol ⁻¹)		

Question Number	Acceptable Answers	Reject	Mark
2(c)(iii)	$\Delta H_{\rm X} = 6490 - 8542 = -2052 (\rm kJ mol^{-1})$		1
	Allow TE from 21(c)(ii)		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(iv)	Bond energy calculation based on $H_2O(g)$ OR ΔH_c° based on $H_2O(I)$ Allow Bond energy varies with environment/ mean bond energies do not equal actual bond energies for these reactants Ignore reference to standard conditions		1

Total = 12 marks

Question Number	Acceptable Answers	Reject	Mark
3 (a)(i)	25 x 4.18 x 11 = 1149.5 (J) ALLOW 1.1495 kJ	1149.5 kJ	1
	Otherwise ignore units even if incorrect		
	IGNORE sign		
	IGNORE SF except one or two SF		

Question Number	Acceptable Answers		Reject	Mark
3(a)(ii)	-115 kJ mol ⁻¹ ALLOW -115000 J mol ⁻¹			2
	Sign with correct value	(1)		
	Units and three significant figures	(1)	J or kJ alone	
	Mark independently			
	ALLOW TE from (i)			
	-114 kJ mol ⁻¹ (rounding error) scores	5 1		
	-115.0 kJ mol ⁻¹ scores 1			
	Values of -4600 and -3.86 are quite common			
	ALLOW K and j in any case in units			

Question	Acceptable Answers		Reject	Mark
Number 3(b)	2NaHCO ₃ (s) Na ₂ CO ₃ (s) + CO ₂ (g) + H ₂ O(l) 2HCI(aq) (2HCI(aq)) 2NaCI(aq) + 2CO ₂ (g) + 2H ₂ O(l)			5
	First mark			
	Arrow from products in top line to lower line correct entities	and (1)		
	NaCI + CO ₂ + H_2O			
	Second mark			
	$2NaCl(aq) + 2CO_2(g) + 2H_2O(l)$			
	Correct state symbols and balancing	(1)		
	$\Delta H^{\circ} = +91.6 \text{ OR} +91.7 \text{ (kJ mol}^{-1}\text{)}$			
	ALLOW no positive sign only if correct			
	Working with correct signs given (3)			
	OR			
	Third mark			
	Correct use of Hess's Law			
	(in numbers or symbols) consistent			
	with arrow direction	(1)		
	Fourth mark			
	$2x(-115) = \Delta H^{\circ} - 321.6$			
	Correct multiples and numbers	(1)		
	ALLOW			
	2 x any number (including -4600 and			
	-3.86) except 2 x +/- 321.6			
	Notice Third and Fourth marks can be			
	scored by ΔH ^o = 2(-115) - (-321.6)			

Fifth mark	
$\Delta H^{\circ} = 2(-115) - (-321.6)$	
$= +91.6 (kJ mol^{-1})$	
OR	
$\Delta H^{o} = 2(-114.95) - (-321.6)$	
$= +91.7 (kJ mol^{-1})$	
Correct value for their calculation with correct sign	
IGNORE SF except 1	
ALLOW no positive sign only if correct working with correct signs given (1)	
Omitting 2x gives +206.6 (could get 4 marks)	
-4600 gives -598.4	
-3.86 gives +313.88	

Question Number	Acceptable Answers	Reject	Mark
3(c)	((±) 0.5 x 2 x 100 /11) = (±)9.09 (%)		1
	ALLOW at 9.0909/9.091/9.1 and 9	9.10/9.0	

Question Number	Acceptable Answers	Reject	Mark
3(d))	irst mark		2
	It is used as a raising agent / self raising flour / baking soda / baking powder	To make pastry rise	
	OR	Bicarbonate of soda	
	Causes cakes / (soda) bread to rise / expand. (1)		
	Second mark		
	Carbon dioxide (released on heating causes cakes / bread to rise)	Gas Air	
	OR		
	It reacts with acid to form carbon dioxide (in baking powder) providing bread /cake etc is mentioned (1)	Neutralizing acid foods	
	ALLOW Used in cooking green vegetables To keep green colour		

Question Number	Acceptable Answers	Reject	Mark
4(a)	The heat/enthalpy/energy change (for a reaction) is independent of the path(way)/route IGNORE any extra detail referring to "initial and final states"		1

Question	Acceptable Answers	Reject	Mark
Number			
4(b)(i)	CH ₄ + 1 1/2 O ₇ CO + 2H ₂ O		2
	(100)		
	$(+ 1/2 O_2)$ (+ 1/2 O ₂)		
	CO ₂ + 2H ₂ O		
	$CO_2 + 2H_2O$		
	(1)		
	Both arrows in correct direction		
	downwards		
	(1)		
	IGNORE state symbols, even if		
	incorrect		
	Mark the two points independently		

Question Number	Acceptable Answers		Reject	Mark
4(b)(ii)	$\Delta H = -890 - (-283)$ (1 = -607 (kJ mol ⁻¹) (1 Correct answer with no working scor (2) NOTE: +607 (kJ mol ⁻¹) scores (1) only)		2

Question Number	Acceptable Answers	Reject	Mark
*4 (b) (i	Cannot stop the reaction at CO OR the reaction produces CO ₂ /complete combustion occurs OR may produce some carbon/soot OR cannot react exact amounts of methane to oxygen	 non-standard conditions Just incomplete combustion occurs Just forming 'other products' /just a 'mixture of products' Just methane is 'very reactive'/ 'explosive' Just heat loss Cannot measure the temperature change 	1
Question Number	Acceptable Answers	Reject	Mark
4(c)	First mark: State of the H ₂ O Water is in the gas phase/water is (formed) as steam/water is not in its standard state/water is not (formed as a) liquid (1) Second mark: Idea of an energy change when there is a change of state Change of state involves an energy change /energy change (for the reaction given) is less exothermic (1) ALLOW 'more endothermic' instead of 'less exothermic' IGNORE references to non-standard conditions	Energy change is more exothermic /less endothermic Heat loss 'Incomplete combustion'	2

Question Number	Correct Answer	Reject	Mark
5(a)	FmarkEnthalpy change when 1 mol of gaseousions(1)ALLOW energy change/heat	Energy required or energy taken in Atoms or molecules	2
	change/energy evolved/released/ given out/exothermic Second mark Is dissolved/hydrated/solvated such that further dilution causes no further heat change OR Is dissolved to produce an infinitely dilute solution/in excess water (1)	(0) 1 mol of water	
	ALLOW Is dissolved to produce a solution of 1.0 mol dm ⁻³		

Question Number	Acceptable Answers	Reject	Mark
5(b)(i)	K ⁺ (aq) (+) F ⁻ (aq)	K ⁺ F ⁻ (aq)	1

Question Number	Acceptable Answers	Reject	Mark
5(b)(ii)	$\Delta H_{sol} = -\Delta H_1 + \Delta H_2$ OR $\Delta H_{sol} = \Delta H_2 - \Delta H_1$		1

Question Number	Acceptable Answers	Reject	Mark
5(b)(iii)	(Standard) Lattice(enthalpy/energy/ Δ H)	LE/Lat - Lattice	1

Question Number	Acceptable Answers	Reject	Mark
5(b)(iv)	First mark Selection of (-)817 rather than (-)807 (1)		2
	Second mark $\Delta H_{sol} = 817 - 805 = (+)12 \text{ (kJ mol}^{-1})$ (1) Just (+)12 (kJ mol}^{-1}) (2)	-12 (max 1)	
	ALLOW TE for second mark e.g. for 807 gives (+) 2 (kJ mol ⁻¹)		
	ALLOW TE from incorrect b(ii)		

Question Number	Acceptable Answers		Reject	Mark
5(c)(i)	EITHER No change/no measurable change in temperature OR (Very small) decrease in temperature	(1)	Any reference to temp increase /exothermic	3
	Thermometer not sensitive/precise enough/precision of thermometer is + or - 0.5 °C/graduations too large Amount of energy taken in is small //	(1) ∆ <i>H</i> sol	Just accuracy +/- 1 °C	
	is small/mass of sodium chloride is small/slightly endothermic	(1)		

Question Number	Acceptable Answers		Reject	Mark
	Acceptable Answers (The reaction is endothermic so) Entropy(change) of surroundings decreases OR ΔS_{sur} is negative OR $-\Delta H/T$ is negative But entropy (change)of system increases (as there is an increase in disorder) OR ΔS_{sys} is positive	(1)	Reject S _{sur} is negative S _{sys} is positive	Mark 4
	Increase in entropy of system outweighs/greater than decrease in entropy of surroundings / value for entropy change of system is greater than entropy change of surrounding Total entropy (change) is positive All marks are stand alone	-		

Question Number	Acceptable Answers	Reject	Mark
*5(d)	Any four from: The difference between Born Haber and theoretical LE is greater for LiI than for LiCI (1)		4
	(845 and 848 =) 3 for LiCl whereas (738 and 759 =) 21 for Lil (1) Iodide ion is larger than chloride ion/lower charge density on iodide ion (1)	Reject values with + Iodine/Chlorine atoms or molecules	
	The iodide ion is more likely (than the chloride ion) to be polarized (by lithium ion) (1) Lil likely to have more covalent character than LiCl	Iodine/Chlorine atoms or molecules	
	(1)		